Pharma industry: quality assurance or quality management?

Julia Sipos
Institute of Isotopes Co. Ltd., Hungary

Historical background and evolution

- GMP’s history started in early 1900s
- Formalised regulation since 1963
- Focused on patient safety and product quality
- Starting point to change of approach: Issue of ISO 9001:2000 and related documents
 - quality management instead of quality assurance
 - use of PDCA cycle
 - planned for integrated use with other systems
 - eight quality principles...
Eight quality principles

- Customer focus
- Leadership
- Involvement of people
- Process approach
- System approach to management
- Continual improvement
- Factual approach to decision making
- Mutually beneficial supplier relationships

Terms and definitions - ISO 9000:2005

- Quality management
 coordinated activities to direct and control an organization with regard to quality. It includes:
 - establishment of the quality policy and quality objectives,
 - quality planning
 - quality control
 - quality assurance and
 - quality improvement

- Quality assurance
 focused on providing confidence that quality requirements will be fulfilled.
New approach in pharma legislation

- Quality Management System for APIs Manufacturers – integrating ICH Q7 into ISO 9001 (September, 2005)
 “…ISO 9001:200 series are an excellent complementary fit to the GMP requirements…”

 “…an example of a pharmaceutical quality system designed for the entire product lifecycle and therefore goes beyond current GMP requirements”

Latest issues

- Changes of Chapter 4 an Annex 11 of GMP guide
 - due to spread of computer systems
 - structure and content integrates ISO 9001 requirements

- Discussion opened about change of Chapter 8
 - “Concept paper on Revising Chapter 8 of the EC guide to GMP to introduce risk-based concepts and to provide for more effective investigations and CAPA actions”
Institute of Isotopes Co. Ltd

- Institute of Isotopes was established in 1959 by the Hungarian Atomic Energy Committee
- New organizational system from 1993 – divided into three independent organizations
 - Institute of Isotopes Co., Ltd.
 - Institute of Isotopes (research institute)
 - Izinta Co., Ltd. (trading company)
- Export rate above 75% to more than 60 countries, more than 120 customers

Organization

Managing Director

- Research and Development
- Business Development
- Marketing

- Quality Management
- Chief Engineer (Technical Services)
- Logistics
- Commerce
- Finance

- Radiopharmaceutical Business Line
- Immunoassay Business Line
- Synthesis Business Line
- Radiation Technique Business Line

Number of employees: total ~ 180, in pharma: ~ 35 (production & QC)
Infrastructure and licences

- Laboratories
 - Total area (in whole company): ~10 000 m²
 - Laboratories for treatment of radioactivity of high & medium level
 - Clean rooms for production of non-radioactive and radioactive pharmaceutical production

- Licensed company, possessing a GMP Certificate for
 - pharmaceutical preparation
 - manufacturing of APIs
 - investigational products for clinical trials

Radiopharmaceutical Business Line

Products

- „In vivo” tracers – small quantities, special radioactive products
- Cold kits for 99mTc-labelling for diagnostic purposes:
 - kidney (scintigraphy - DMSA, glomerular & tubular function - DTPA & EC)
 - liver and hepatobiliary system (morphology - FYTON, function - TECHIDA)
 - bone scintigraphy, metastasis localization - MDP
- Standard reactor isotopes produced: 125I, 131I, 90Y, 153Sm, 166Ho
- Most important radiopharmaceuticals
 - 131I solution and capsule – for treatment of hyperthyreosis and thyroid carcinoma
 - 131I MIBG - for diagnosis and treatment of neuroendocrine tumours
 - 90Y and 153Sm for labelling MULTIBONE-kit – for treatment of painful bone metastases
 - 166Ho for labelling SYNOPHYT kit – for treatment of rheumatoid arthritis in the knee
 - 14C-urea capsule – for a breath test for diagnosis of Helicobacter pylori infection
History of QMSs at the company

- First implementation of ISO 9001 QMS
 - for all activities of the company (including pharmaceuticals)
 - certified in 1998
 - according to ISO 9001:1994
 - central and business line level documents
 - separate and very detailed regulations in all areas

- Results
 - operation
 - became more regulated
 - could be followed more easily, but it “caused” …

- Difficulties
 - to keep the system up-to-date and
 - in some cases unnecessary/duplicate documentation to be done

- Upgrade to ISO 9001:2000 – was not so fundamental as it could be due to the new approach of the standard

History of QMSs at the company

- Implementation of GMP regulations for pharmaceutical aspects
 - in some cases existing documents were amended, but
 - in most cases additional documents were established

 where regulation was missing

 - preferred to handle GMP as separate as possible from ISO 9001 QMS (2002-2008)
 - the integrated thinking was more accepted in 2011
History of QMSs at the company

- For in vitro diagnostics: certified ISO 13485 quality management system
 - since 2008 for one product
 - since 2009 for all IVDs for human healthcare use
- CE mark for IVDs according to EU regulations including those requiring certification (PSA tumour markers)
- Fully integrated system with ISO 9001
- Number of new regulations is very limited
 - procedure for additional requirements (e.g. handling of technical documentation)
 - cross reference table (essential requirements vs. QMS)

Improvement of QMS

- Change to more user friendly system is now in process for all activities of the company
- Main challenges:
 - change way of thinking about systems integration
 - handling impact of changes on the whole system
- No company level computerised management system in place (partial systems are available)
 - so far we improved the system within current possibilities
 - now it is planned to be implemented
- In order to make the operation more
 - integrated and so
 - effective and efficient
Improvement of QMS

- Taking into account specialities of the company
 - small industry
 - national company
 - special product nature (radioactive)
- PDCA to be followed in each activity, e.g.
 - preparation to new activities
 - handling of deviations, CAPAs
 - handling of change control
- Application of risk assessment in planning of
 - re-validation and re-qualification frequency
 - training
 - self-inspection (internal audit)
 - supplier audit

To update documentation to make it more
- transparent
- easy to use
- easy to update

System improvement is a
- step by step process
- a planned and controlled activity

The system integrity shall be maintained for all activities during improvement period throughout the company
The improvement supports awareness of employees
Achievements so far – since 2009

- Risk assessment systematically used
- Handling of documentation (both prescriptions and records) updated
- Centralised registry and database established for handling of deviations and “ISO nonconformities” (CAPA)
- change controls
- out of specification results
- Process of logistics (excluding production and sales) updated in unified manner
- Complaints and CAPA handling procedure updated
- Sampling SOPs updated and simplified in structure

Further plans

- Update design and development procedure
- Update and simplification SOP level regulations (e.g. in maintenance)
- To be involved in implementation of computerised management system in order to take part in fundamental changes that impact QMSs
- have an early understanding of requirements and opportunities
- speed up improvement process of GMP compliance in a user friendly manner

Ultimate result: movement from management of quality towards quality of management
THANK YOU FOR YOUR ATTENTION!

www.izotop.hu
izotop@izotop.hu