Process Evolution through Integration of Shainin and Taguchi - A Case Study in Alternator Manufacturing

by

Dr N Ravichandran
Chief Executive Officer
Lucas-TVS Ltd
Padi, Chennai 600 050, India

Contents

1.0 Overview of Lucas-TVS
2.0 Introduction about Alternator
3.0 Problem definition
4.0 Diagnostic approach – Shainin Method
5.0 Root Cause - Validation
6.0 Improvement approach – Taguchi Method
7.0 Result Validation
8.0 Standardisation
9.0 Conclusion
10.0 Overview of Shainin Tools
1.0 Overview of Lucas - TVS

1.1 Lucas–TVS Auto Electrical plants

- Established 1961, originally a joint venture between Lucas Plc UK and TVS, wholly owned since 2001
- Four decades of leadership on Indian Market
- 7 plants in India, main plant in Chennai with 2600 employees
- Product development capability: 80% of revenue from In-house developed products
- Technical Collaboration
 - Mitsubishi Electric: Geared Starters / Internal Fan Alternators
 - Denso: Ignition Systems, Two Wheeler Starters
 - YDK Japan: Blower Motors
1.1 Other Plants

- PLANT II: Rewari, Haryana
- PLANT III: Nettappakkam, Pondy
- PLANT IV: Chakan, Pune
- PLANT V: TV Koli, Pondy
- PLANT VI: Pant Nagar, Uttarakhand
- PLANT VII: Maraimalai Nagar (Near Chennai)

1.2 Product Range

<table>
<thead>
<tr>
<th>Products</th>
<th>Annual Units (In Lacs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternators</td>
<td>25.30</td>
</tr>
<tr>
<td>Starters</td>
<td>33.90</td>
</tr>
<tr>
<td>Two Wheeler Starters</td>
<td>38.00</td>
</tr>
<tr>
<td>Wipers</td>
<td>22.10</td>
</tr>
<tr>
<td>Compressor Motors</td>
<td>4.70</td>
</tr>
<tr>
<td>Ignition Coils</td>
<td>13.50</td>
</tr>
</tbody>
</table>
1.3 Blue Chip Customer Base

PASSENGER CARS
- **Commercial Vehicles**
 - Mercedes-Benz
 - Audi
 - Volkswagen
 - BMW
 - Honda
 - WABCO
 - GM
 - Fiat

COMMERCIAL VEHICLES
- **Tier 2**
 - Mack
 - Paccar
 - Volvo
 - John Deere
 - Mando
 - Peugeot
 - Hyundai
 - Fiat

TRACTORS
- **Construction**
 - Mahindra
 - Swaraj
 - John Deere
 - Same Deutz-Fahr

PICK UPS & SUVs
- **Buses & Coaches**
 - Tata
 - Ashok Leyland
 - Mahindra Navistar

TWO-WHEELERS
- **Engines**
 - Kohler
 - Volvo

TRACTORS
- **Construction**
 - Larse & Touberc
 - Komatsu
1.4 Recognitions & Awards

TS 16949

OHSAS 18001

ISO 14001

Deming Award

- JIT Innovation Award from JIT Management Lab, Tokyo
- JIT Grand Prix Award from JIT Management Lab, Tokyo (Thrice)
- Frost & Sullivan – Platinum Award for Manufacturing Excellence
- BIS – Rajiv Gandhi National Award
- Energy Conservation Award

Dr. N. Ravichandran

1.4 Recognitions & Customers Awards

Quality

- **Maruti Suzuki** Best Warranty Improvements 2009
- **Maruti Suzuki** - VA/VE Award, 2006
- **Maruti Suzuki** - Vendor Performance Award for Quality, 2004-05
- **Ford** - Q1 Award, August 2006
- **Hyundai Motor India** - Best Quality Performance Award, 2008-09
- **Hyundai Motor India** - 100 PPM Award, 2003
- **Mahindra** - Best Quality Performance Award (FES), 2006-07

- **Maruti Suzuki** Vendor Upgradation Award, 2011
- **Maruti Suzuki** Best Vendor Upgradation Award, 2010
- **Maruti Suzuki** Best Vendor Upgradation Award, 2009
- **Maruti Suzuki** Best Supplier Support Award, 2008
- **Maruti Suzuki** - Best Supplier Support Award, 2007-08
- **Maruti Suzuki** - Best Vendor Award, 2006
- **Maruti Suzuki** - Superior Kaizen Performance Award, 2004
- **Mahindra & Mahindra** – Annual Commodity Award, 2011
- **Ashok Leyland** - Outstanding Performance in Management, 2007-08
- **Cummins India** - Excellent Performance Award, 2007+2008
- **Cummins India** - Best Performer Award, 2003
- **Honda Motorcycles and Scooter India** - Achievement Award 2008-09
- **Honda Motorcycles and Scooter India** - Best Supplier Award, 2005
- **Hyundai Motor India** - Overall Best Performance, 2004
- **Tata Motors** - Enduring Relations Excelling Together Award, 2008

Performance

Dr. N. Ravichandran
Case Study -

2.0 Introduction about Alternator
3.0 Problem Definition

3.1 Case Study – Problem Definition

Problem Statement

- Poor First Pass Yield during Pilot Production Trial Run of a New Product Introduced

<table>
<thead>
<tr>
<th>Expected Yield</th>
<th>Actual Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 95 %</td>
<td>< 85 %</td>
</tr>
</tbody>
</table>

Pilot run rejection data

- Qty Produced = 200
- Qty Rejected = 32

88% of rejection due to Initial Cut in Failure
3.2 Case Study – Problem Definition

What is Initial Cut In Failure?

- When alternator is generating sufficient Threshold Current - the warning lamp on the Dash Board is OFF - indicating to the driver proper functioning of alternator. The failure to produce this current is called Initial cut in failure - **Warning Lamp Not OFF**

![Typical Alternator Circuit Diagram]

4.0 Diagnostic Approach – Shainin Method
4.1 Case Study – Cause Analysis

Cause & Effect Diagram:

Stator
- Id oversize
- Resistance imbalance

Assembly Process
- Rotor rubbing
- Slip ring tag broken
- Insul bush damaged
- Carbon brush broken
- Positive diode shorting
- Regulator A terminal damaged

Warning lamp NOT OFF
- Rpm Meter not working
- Stator phase nut not tighten
- Improper soldering on stator leads
- Excess basket OD
- Ineffective soldering of stator leads

Dr. N. Ravichandran

4.2 Case Study – Cause Analysis

Diagnostic Approach:

Conventional Approach
- Check Conformance to Standards & Specifications
- Identify the cause by conducting Fresh experiments
- Fresh Experiments conducted with pre determined levels for Specified factors - to avoid failure phenomenon
- The factors and their levels are chosen based on Experience & Knowledge

Shainin Clue Generating Approach
- Identify the Cause from the existing Good & Bad
- Select BOB - Best of Best & WOW - Worst of Worst from the existing lot
- Conduct Designed Experiments using these BOB & WOW to Identify the Culprit cause.

Since Pilot Run - all the parts have been checked for conformance prior to assembly.

Hence, to cut short time & effort Shainin Approach is Preferred

Dr. N. Ravichandran
4.3 Case Study – Shainin Approach

Shainin Component Search:

This is a diagnostic study by Elimination

- **A pair of BOB & WOW Selected**
- **First phase of Elimination – Identify which is contributing**
 Using D/d Ratio by disassembling & reassembling Twice - BOB / WOW

 - **Assembly Process**
 - **Constituent Parts**

 - **If D/d Ratio < 1.25**

 - **If D/d Ratio > 1.25**

- **Second phase of Elimination – Identify which part is contributing by Swapping parts by pre determined Priority between BOB & WOW.**

- **Capping Run – confirming the Finding**

Dr. N. Ravichandran

4.4 Case Study – Shainin Approach

**Shainin Component Search: **

Elimination Phase 1

<table>
<thead>
<tr>
<th></th>
<th>BOB WL Current O/P</th>
<th>WOW WL Current O/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial assembly</td>
<td>0.31</td>
<td>0.08</td>
</tr>
<tr>
<td>After 1st re-assembly</td>
<td>0.39</td>
<td>0.06</td>
</tr>
<tr>
<td>After 2nd re-assembly</td>
<td>0.28</td>
<td>0.05</td>
</tr>
<tr>
<td>Median</td>
<td>0.33</td>
<td>0.065</td>
</tr>
<tr>
<td>Range</td>
<td>0.11</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Specification of WL current O/P

- **> 0.12 amps**

D / d Test:

- Difference between the medians (D): $0.33 - 0.065 = 0.265$
- Average range (d): $(0.11 + 0.03) / 2 = 0.07$

- $D/d = 0.265 / 0.07 = 3.785 > 1.25$

Inference:
Assembly Process is not Culprit

Dr. N. Ravichandran
4.4 Case Study – Shainin Approach

Shainin Component Search:

Elimination Phase 2

Control limits for Swapping: This is not same as Specification

Control limit BOB = Median of BOB +/- (2.776/1.81)d
BOB :- Min = 0.2227, Max = 0.4375;
Control limit WOW = Median of WOW +/- (2.776/1.81)d
WOW- Min = -0.0423, Max = 0.1723

Priority for Swapping: This is based on Knowledge & Experience

1. Rotor assembly
2. Regulator Rectifier Assembly
3. Stator Assembly

Shainin Component Search:

Out put measured with parts interchanged

<table>
<thead>
<tr>
<th></th>
<th>First Reassembly</th>
<th>Second Reassembly</th>
<th>ROTOR INTERCHANGE</th>
<th>Bring back to original</th>
<th>RECTIFIER & REGULATOR</th>
<th>Bring back to original</th>
<th>STATOR ASSY</th>
<th>Bring back to original</th>
<th>Capping Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.28</td>
<td>0.23</td>
<td>0.25</td>
<td>0.29</td>
<td>0.32</td>
<td>0.06</td>
<td>0.3</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inference:

Hence Stator is the Culprit

Total Reversal when Stator is Interchanged

Dr. N. Ravichandran
4.5 Case Study – Shainin Approach

Shainin Paired Comparison: To Identify the Product Feature Contributing to the Defect

- Six pairs of Bob & Wow Selected
- These pairs are compared in all aspects – whether specified in the design or not
- Significance of each feature compared is decided using “Tukey End Count Test”

The response of each feature compared is arranged in either ascending or descending order. The no. of continuous good or bad at either end is called the top & bottom end counts.

The Significance level of each feature is based on the total end count which is sum of top & bottom count:

<table>
<thead>
<tr>
<th>If the Total End count is</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>90%</td>
</tr>
<tr>
<td>7</td>
<td>95%</td>
</tr>
<tr>
<td>10</td>
<td>99%</td>
</tr>
<tr>
<td>12</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Dr. N. Ravichandran
4.5 Case Study – Shainin Approach

Shainin Paired Comparison: Response Arranged in Descending order

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Stator Basket OD</th>
<th>Stator Basket ID</th>
<th>Stator Overhang</th>
<th>Stator ID</th>
<th>ID ovality</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>119.2</td>
<td>G5</td>
<td>99.36</td>
<td>G5</td>
<td>15.65</td>
</tr>
<tr>
<td>G4</td>
<td>119.18</td>
<td>B4</td>
<td>99.32</td>
<td>B6</td>
<td>15.55</td>
</tr>
<tr>
<td>B5</td>
<td>119.17</td>
<td>B6</td>
<td>99.29</td>
<td>G4</td>
<td>15.49</td>
</tr>
<tr>
<td>G5</td>
<td>119.14</td>
<td>G6</td>
<td>99.24</td>
<td>G6</td>
<td>15.47</td>
</tr>
<tr>
<td>B4</td>
<td>119.13</td>
<td>B5</td>
<td>99.22</td>
<td>B1</td>
<td>15.45</td>
</tr>
<tr>
<td>G1</td>
<td>119.1</td>
<td>G4</td>
<td>99.21</td>
<td>G3</td>
<td>15.39</td>
</tr>
<tr>
<td>B3</td>
<td>119.1</td>
<td>G1</td>
<td>99.2</td>
<td>G2</td>
<td>15.35</td>
</tr>
<tr>
<td>B6</td>
<td>119.08</td>
<td>B2</td>
<td>99.2</td>
<td>B2</td>
<td>15.33</td>
</tr>
<tr>
<td>B2</td>
<td>118.99</td>
<td>B3</td>
<td>99.18</td>
<td>B4</td>
<td>15.31</td>
</tr>
<tr>
<td>G6</td>
<td>118.98</td>
<td>G3</td>
<td>99.17</td>
<td>B5</td>
<td>15.27</td>
</tr>
<tr>
<td>G3</td>
<td>118.95</td>
<td>G2</td>
<td>99.16</td>
<td>G1</td>
<td>15.24</td>
</tr>
<tr>
<td>B1</td>
<td>118.95</td>
<td>B1</td>
<td>99.14</td>
<td>B3</td>
<td>15.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Top end count</th>
<th>Bottom end count</th>
<th>Total end count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Inference:

- Stator ID is the only feature contributing significant @ 99.7% confidence
- If the ID of the stator core is near to the top limit of the speciation – the defect occurs

Dr. N. Ravichandran

5.1 Case Study – Shainin Validation

Shainin B vs C Test: To validate the finding

- Six pairs of units build fresh to confirm the finding

 Six presumed Bad units

 Assembled

 With

 the significant part conforming to (WOW) Bad unit values & other parts random

 Six presumed Good units

 Assembled

 With

 the significant part conforming to (BOB) Good unit values & other parts random

 Tukey test applied to the response of these pairs:

 Six presumed Bad units

 If Results into

 Actual Bad units

 Validates the earlier Finding

 Six presumed Good units

 If Results into

 Actual Good units

Dr. N. Ravichandran
5.0 Root Cause - Validation

5.1 Case Study – Shainin Validation

Shainin B vs C Test:

Response from Suspected “C” and Better “B” Process

<table>
<thead>
<tr>
<th>6 nos with Current (C) and 6 nos with claimed Better Process (B) are tightened in random order</th>
<th>Tukey Test on Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>95.44</td>
</tr>
<tr>
<td>C5</td>
<td>95.44</td>
</tr>
<tr>
<td>C3</td>
<td>95.435</td>
</tr>
<tr>
<td>C6</td>
<td>95.435</td>
</tr>
<tr>
<td>C2</td>
<td>95.43</td>
</tr>
<tr>
<td>C4</td>
<td>95.43</td>
</tr>
<tr>
<td>B5</td>
<td>95.4</td>
</tr>
<tr>
<td>B2</td>
<td>95.39</td>
</tr>
<tr>
<td>B3</td>
<td>95.385</td>
</tr>
<tr>
<td>B1</td>
<td>95.38</td>
</tr>
<tr>
<td>B3</td>
<td>95.375</td>
</tr>
<tr>
<td>B6</td>
<td>95.37</td>
</tr>
</tbody>
</table>

Inference: If the ID of the stator core is near to the top limit of the speciation – the defect occurs – this is validated.

Thus the Root cause of the defect is Validated
5.2 Case Study – Root cause

Stator ID Variation - Root cause:

Process Capability of Stator ID:

\[\text{C}_p = 1.44 \]
\[\text{C}_pk = 1.25 \]

Root Cause:

- Stators having ID near to the design target are Good.
- Whereas ID near to the top limit but still within specification are leading to defect
- And Stator ID population spreads up to the top limit of the specification

6.0 Improvement approach – Taguchi Method
6.1 Case Study – Improvement

Stator ID Manufacturing Process: It is a coining process done in 250 ton hydraulic press.

Factors affecting variation / Consistency in Stator ID:

1. Ram Pressure
2. Dwell time
3. Diecushion pressure
4. Initial pack thickness of stator before coining
5. Coil hardness of stator material

Selecting Levels of Factors & Response:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Ram Pressure)</td>
<td>100 bar</td>
<td>160 bar</td>
</tr>
<tr>
<td>B (Dwell Time)</td>
<td>3 Sec</td>
<td>5 Sec</td>
</tr>
<tr>
<td>C (Hardness)</td>
<td>112 Bhn</td>
<td>119 Bhn</td>
</tr>
<tr>
<td>D (Die Cushion ejection pressure)</td>
<td>5 Bar</td>
<td>20 bar</td>
</tr>
<tr>
<td>E (Pack Thickness)</td>
<td>0.78 mm * 30 layers</td>
<td>0.81 mm * 31 layers</td>
</tr>
</tbody>
</table>

Interactions considered

- AB: Ram pressure & Dwell time
- AC: Ram pressure & Hardness

It is decided to conduct experiment at different levels of these known factors to identify significance.

6.2 Case Study – Improvement

Improving Stator ID:

- Levels of factors and their interactions are selected based on domain knowledge and experience.
- It is decided to measure Stator ID and ID ovality as Response.
6.2 Case Study – Improvement

Improving Stator ID:

Experiment Design:
Taguchi L8 OA design is chosen – based on the no. of factors, their levels / interactions and Deg. Of freedom

<table>
<thead>
<tr>
<th>Factors</th>
<th>Ram Pr</th>
<th>Dwell time 1*2</th>
<th>Hardness 1*4</th>
<th>Die cushion</th>
<th>Initial pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Exp 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exp 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Exp 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exp 4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Exp 5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Exp 6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Exp 7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Exp 8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Experiment Response Table:

<table>
<thead>
<tr>
<th>Factors</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ram Pr</td>
<td>Stator ID (mm) 95.33 - 95.44</td>
</tr>
<tr>
<td>Dwell time 1*2</td>
<td>ID Ovality (mm) 0.1 Max</td>
</tr>
<tr>
<td>Hardness 1*4</td>
<td></td>
</tr>
<tr>
<td>Die cushion</td>
<td></td>
</tr>
<tr>
<td>Initial pack</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp 1</th>
<th>Exp 2</th>
<th>Exp 3</th>
<th>Exp 4</th>
<th>Exp 5</th>
<th>Exp 6</th>
<th>Exp 7</th>
<th>Exp 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Dr. N. Ravichandran
6.3 Case Study – Improvement

Experiment ANOVA Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DOF</th>
<th>Mean Square</th>
<th>F₀</th>
<th>Ftable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ram pressure</td>
<td>0.0004</td>
<td>1.0000</td>
<td>0.0004</td>
<td>0.6677</td>
<td></td>
</tr>
<tr>
<td>Dwell time</td>
<td>0.0062</td>
<td>1.0000</td>
<td>0.0062</td>
<td>11.7774</td>
<td>5.3200</td>
</tr>
<tr>
<td>1 & 2</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0267</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0030</td>
<td></td>
</tr>
<tr>
<td>1 & 4</td>
<td>0.0015</td>
<td>1.0000</td>
<td>0.0015</td>
<td>2.8516</td>
<td></td>
</tr>
<tr>
<td>Die cushion</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0742</td>
<td></td>
</tr>
<tr>
<td>Initial Thickness</td>
<td>0.0003</td>
<td>1.0000</td>
<td>0.0003</td>
<td>0.5015</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.0042</td>
<td>8.0000</td>
<td>0.0005</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0126</td>
<td>15.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only Dwell time is Significant for Stator ID

ANOVA TABLE - ID Ovality

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DOF</th>
<th>Mean Square</th>
<th>F₀</th>
<th>Ftable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ram pressure</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0069</td>
<td></td>
</tr>
<tr>
<td>Dwell time</td>
<td>0.0005</td>
<td>1.0000</td>
<td>0.0005</td>
<td>1.9931</td>
<td>5.3200</td>
</tr>
<tr>
<td>1 & 2</td>
<td>0.0001</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.3379</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>0.0001</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.5586</td>
<td></td>
</tr>
<tr>
<td>1 & 4</td>
<td>0.0001</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.3379</td>
<td></td>
</tr>
<tr>
<td>Die cushion</td>
<td>0.0003</td>
<td>1.0000</td>
<td>0.0003</td>
<td>1.1655</td>
<td></td>
</tr>
<tr>
<td>Initial Thickness</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0069</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.0018</td>
<td>8.0000</td>
<td>0.0002</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0028</td>
<td>15.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No factor is Significant for ID Ovality

6.4 Case Study – Improvement

Selecting Optimum Levels:

- From the Response graph the optimum level of the significant factor is chosen
- Dwell time of 5 Sec yields response closer to the design target
- The levels of other factors are chosen by studying the response table and based on Technical and economic feasibility etc..
- It is observed at Die cushion pressure of 20 bar - burr is noticed hence not chosen
- Further the hardness & initial pack are noise factors within the specified tolerance band and are not significant - hence the allowable tolerance band is chosen as optimum.

Recommended levels of factors:

Ram pressure = 160 bar
Dwell time = 5 sec
Die cushion pressure = 5 bar
7.0 Result Validation

7.1 Case Study – Result Validation

Confirmatory experiment at Optimum Levels (Stator manufacturing):

- An experiment run at optimum level & process capability observed

<table>
<thead>
<tr>
<th></th>
<th>Cp</th>
<th>Cpk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1.44</td>
<td>1.25</td>
</tr>
<tr>
<td>After</td>
<td>2.02</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Inference:
The selected Optimum levels have yielded the desired reduction in variation
7.2 Case Study – Result Validation

Confirmatory Second Production Trial Run (Alternator Assembly):

- Alternators assembled with stators manufactured from new process –
 with some stators selected near to the top limit of the improved population

<table>
<thead>
<tr>
<th></th>
<th>Before Improvement</th>
<th>After Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>First pass Yield</td>
<td>84 %</td>
<td>98 %</td>
</tr>
<tr>
<td>Qty Produced (Nos)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Qty Rejected (Nos)</td>
<td>32</td>
<td>4</td>
</tr>
</tbody>
</table>

Failure Modes

<table>
<thead>
<tr>
<th>Initial Cut in Failure - W lamp Not OFF (Nos)</th>
<th>Before Improvement</th>
<th>After Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td>Zero</td>
</tr>
<tr>
<td>W lamp Not ON (Nos)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mild Glow (Nos)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bind (Nos)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pulley Damage (Nos)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Through bolt damage</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brush Broken</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Improving Stator ID Process Capability has Eliminated top ranked defect and has improved First Pass Yield of the Assembly

8.0 Standardisation
8.1 Case Study – Standardizing Improvement

Process Standards Updated:

![Image of a table and chart]

Dr. N. Ravichandran

9.0 Conclusion

Dr. N. Ravichandran
9.1 Case Study – Conclusion

Summary:
- Initial Production trial run of a new product - yielded low first pass yield.
- Major contribution of defect being from Initial Cut in Failure - Warning Lamp Not Off
- Cause & effect diagram indicated contribution from both process as well as parts.
- Shainin Clue Generating Experiments conducted - to quickly funnel down to the culprit
- Variation from the design target of Stator ID is identified as the root cause
- Taguchi L8 OA conducted to optimize the factors affecting the Stator ID
- The optimum levels improved the process capability
- The improved process capability Eliminated the Defect
- Second production trial run confirmed the findings
 - Paved way for PPAP and Production Ramp up without delay

9.2 Case Study – Conclusion

Inference:
- A process standard acceptable to previous products - not acceptable to new product
- Shainin clue Generating tools - enhances the process of identifying the unknown cause
- Shainin Clue generating tools - questions the design specification also
- Shainin Tools generates clue from the available product & process
- Taguchi OA enhances the optimization process once the unknown cause is identified

Future Study:
- Taguchi Parameter designed experiment is to be conducted - to make the process more robust - irrespective of variation in noise factors.
- A study for integrating various problem solving tools are required.
10.0 Overview of Shainin Tools

10.1 Overview of Shainin Tools

SHAININ PHILOSOPHY

DO NOT LET THE ENGINEERS DO THE "GUESSING"
LET THE PARTS "DO THE TALKING"

DETECTIVE APPROACH TO SOLUTION

FACTS FROM PRODUCT / PROCESS → Combined with ENGINEERS’ KNOWLEDGE → Detect → SOLUTION
10.2 Overview of Shainin Tools

CLUE GENERATING TOOLS

- **MULTI - VARI**
 - TO FILTER CYCLICAL; POSITIONAL & TEMPORAL VARIATION

- **COMPONENT SEARCH**
 - TO FILTER PRODUCT PARAMETERS WHEN COMPONENTS ARE INTERCHANGEABLE

- **PAIRED COMPARISON**
 - TO FILTER PRODUCT PARAMETERS

- **CONCENTRATION CHART**
 - TO FILTER VARIATION WITHIN UNIT

- **PRODUCT PROCESS SEARCH**
 - TO FILTER PROCESS PARAMETERS

TO FILTER OUT UNIMPORTANT VARIABLES

WHEN VARIABLES ARE UNKNOWN & MANY

10.3 Overview of Shainin Tools

FORMAL DOE

- **VARIABLES SEARCH**
 - 5 TO 20 VARIABLES

- **FULL FACTORIAL**
 - 4 OR FEWER VARIABLES

- **B vs C TEST**
 - ONE VARIABLE

TO HOME IN ON RED X - ROOT CAUSE

WHEN VARIABLES ARE KNOWN

Dr. N. Ravichandran
10.4 Overview of Shainin Tools

VALIDATION TOOL

B vs C TEST

TO CHECK PERMANENCY OF IMPROVEMENT

TURNING THE PROBLEM ON & OFF
WHEN ROOT CAUSE IS KNOWN

Dr. N. Ravichandran

10.5 Overview of Shainin Tools

OPTIMISATION TOOLS

SCATTER PLOTS
WITH NO INTERACTION OF FACTORS

RSM RESPONSE SURFACE METHODOLOGY
WITH INTERACTION OF FACTORS

TO FIND REALISTIC SPECIFICATIONS & TOLERANCES

TIGHTEN THE TOLERANCES OF IMPORTANT VARIABLES
OPEN UP TOLERANCES OF UNIMPORTANT VARIABLES

Dr. N. Ravichandran
10.6 Overview of Shainin Tools

Salient Learning Points

- MOST UNSUSPECTED CAUSES ARE REVEALED USING CLUE GENERATING TOOLS.

- CONFORMANCE TO SPECIFICATION DOES NOT MEAN FREE OF DEFECT.

Thank You